How to Solve a Diophantine Equation
نویسنده
چکیده
These notes represent an extended version of a talk I gave for the participants of the IMO 2009 and other interested people. We introduce diophantine equations and show evidence that it can be hard to solve them. Then we demonstrate how one can solve a specific equation related to numbers occurring several times in Pascal’s Triangle with state-of-the-art methods. 1. Diophantine Equations The topic of this text is Diophantine Equations. A diophantine equation is an equation of the form F (x1, x2, . . . , xn) = 0 , where F is a polynomial with integer coefficients, and one asks for solutions in integers (or rational numbers, depending on the problem). They are named after Diophantos of Alexandria on whom not much is known with any certainty. Most likely he lived around 300 AD. He wrote the Arithmetika, a text consisting of 13 books, a number of which have been preserved. In this text, he explains through many examples ways of solving certain kinds of equations like the above in rational numbers. Diophantos was also one of the first to introduce symbolic notation for the powers of an indeterminate. To give you a flavor of this kind of question, let me show you some examples. Ideally, you should cover up the part of the page below the equation and try to find a solution for yourself before you read on. The first equation is x + y + z = 29 , an equation in three unknowns, to be solved in (not necessarily positive) integers. I trust it did not take you very long to come up with a solution like (x, y, z) = (3, 1, 1) or maybe (4,−3,−2). Now let us look at x + y + z = 30 . Try to solve it for a while before you look up a solution in this footnote. This solution is the smallest and was found by computer search in July 1999 and published in 2007 [1]. This already indicates that it may be quite hard to find a solution to a given diophantine equation. Now consider
منابع مشابه
On the Diophantine Equation x^6+ky^3=z^6+kw^3
Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...
متن کاملON THE DIOPHANTINE EQUATION xn − 1 x −
We prove that if (x, y, n, q) 6= (18, 7, 3, 3) is a solution of the Diophantine equation (xn−1)/(x−1) = y with q prime, then there exists a prime number p such that p divides x and q divides p − 1. This allows us to solve completely this Diophantine equation for infinitely many values of x. The proofs require several different methods in diophantine approximation together with some heavy comput...
متن کامل"Syntactic" AC-Unification
The rules for unification in a simple syntactic theory, using Kirchner’s mutation [15, 16] do not terminate in the case of associativecommutative theories. We show that in the case of a linear equation, these rules terminate, yielding a complete set of solved forms, each variable introduced by the unifiers corresponding to a (trivial) minimal solution of the (trivial) Diophantine equation where...
متن کاملProducts of Prime Powers in Binary Recurrence Sequences Part I: The Hyperbolic Case, with an Application to the Generalized Ramanujan-Nagell Equation
We show how the Gelfond-Baker theory and diophantine approximation techniques can be applied to solve explicitly the diophantine equation C„ = wpTM< ■ ■ ■ p"< (where {G„}^_o is a binary recurrence sequence with positive discriminant), for arbitrary values of the parameters. We apply this to the equation x2 + k = p\' ■ ■ ■ pf', which is a generalization of the Ramanujan-Nagell equation x2 + 7 = ...
متن کاملOn the Diophantine equation q n − 1 q − 1 = y
There exist many results about the Diophantine equation (qn − 1)/(q − 1) = ym, where m ≥ 2 and n ≥ 3. In this paper, we suppose that m = 1, n is an odd integer and q a power of a prime number. Also let y be an integer such that the number of prime divisors of y − 1 is less than or equal to 3. Then we solve completely the Diophantine equation (qn − 1)/(q − 1) = y for infinitely many values of y....
متن کامل